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Abstract: Kathmandu Valley lies in an active tectonic zone, meaning that earthquakes are common in
the region. The most recent was the Gorkha Nepal earthquake, measuring 7.8 Mw. Past earthquakes
caused soil liquefaction in the valley with severe damages and destruction of existing critical infras-
tructures. As for such infrastructures, the road network, health facilities, schools and airports are
considered. This paper presents a liquefaction susceptibility map. This map was obtained by comput-
ing the liquefaction potential index (LPI) for several boreholes with SPT measurements and clustering
the areas with similar values of LPI. Moreover, the locations of existing critical infrastructures were
reported on this risk map. Therefore, we noted that 42% of the road network and 16% of the airport
area are in zones of very high liquefaction susceptibility, while 60%, 54%, and 64% of health facilities,
schools and colleges are in very high liquefaction zones, respectively. This indicates that most of
the critical facilities in the valley are at serious risk of liquefaction during a major earthquake and
therefore should be retrofitted for their proper functioning during such disasters.

Keywords: critical facilities; Kathmandu Valley; liquefaction; liquefaction potential index; seis-
mic hazards

1. Introduction

Nepal lies in one of the most active tectonic zones of the world, making the region
extremely vulnerable to earthquakes. The Gorkha Nepal earthquake showed that the
country experiences an earthquake of more than 7.0 Mw every 80–100 years [1]. Kathmandu,
the capital city, also forming the central part of the country, is regarded as one of the most
seismically vulnerable zones [2], prone to liquefaction. In recent times, the first liquefaction
was reported during the 1934 Nepal–Bihar earthquake (Figure 1) in the form of ground
fissures, cracks, subsidence, and sand boil up to the height of 4 to 5 m in Kathmandu
Valley [3]. The most recent one, manifested in 2015 by the Gorkha, Nepal earthquake
resulted in minor to major liquefaction in various locations of the valley (Figures 2 and 3).
Liquefaction occurred in several parts of the valley, the surface manifestations of which
were visible (Figure 2) at more than 20 sites in the form of sand boils, cracks on the ground
surface, and bearing capacity failure in buildings [4–9]. The liquefied sites are presented
in Figure 3. Herein, it is important to note that the 2015 Gorkha earthquake occurred in
the dry season, wherein the peak ground acceleration (PGA) recorded was 0.18 g, much
lower than expected (i.e., 0.30 g) [4,5,8,10–13]. However, the liquefaction suggested that
the soil in the valley is highly prone to it, and the situation could have been worse if an
earthquake with higher PGA had occurred in the rainy season (monsoon period). Several
studies (e.g., [14–16]) reported a significant increment of the ground water table in the rainy
season.
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Figure 1. Liquefaction and ground fissures in the (a) Tundhikhel and (b) Nayabazar areas during 

the 1934 Nepal–Bihar earthquake (Adapted from ref. [3]). 

 

Figure 2. Ground liquefaction, settlement, and ground fissures: (a) road settlement at Lokanthali, 

Bhaktpur; (b) lateral spreading of road embankment, Lalitpur; (c) liquefaction in Bungamati, Lalit-

pur; (d) liquefaction-induced fissures in Mulpani, and (e) tilted building due to adjacent ground 

settlement during the 2015 Gorkha, Nepal, earthquake. 

The world at large has witnessed several pieces of evidence of liquefaction during 

some of the most devastating earthquakes [17,18]. For instance, the liquefaction due to the 

Niigata, Japan, earthquake in 1964 resulted in severe foundation failure of buildings and 

bridges, while also damaging roads, railroads, and airport areas [19]. As another example, 

one may consider the Tangshan earthquake in China in July 1976, whereby the liquefac-

tion recorded covered over 2400 km2 area, resulting in a large-scale ground unsettlement, 
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Figure 1. Liquefaction and ground fissures in the (a) Tundhikhel and (b) Nayabazar areas during the
1934 Nepal–Bihar earthquake (Adapted from ref. [3]).
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Figure 2. Ground liquefaction, settlement, and ground fissures: (a) road settlement at Lokanthali,
Bhaktpur; (b) lateral spreading of road embankment, Lalitpur; (c) liquefaction in Bungamati, Lalitpur;
(d) liquefaction-induced fissures in Mulpani, and (e) tilted building due to adjacent ground settlement
during the 2015 Gorkha, Nepal, earthquake.

The world at large has witnessed several pieces of evidence of liquefaction during
some of the most devastating earthquakes [17,18]. For instance, the liquefaction due to
the Niigata, Japan, earthquake in 1964 resulted in severe foundation failure of buildings
and bridges, while also damaging roads, railroads, and airport areas [19]. As another
example, one may consider the Tangshan earthquake in China in July 1976, whereby the
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liquefaction recorded covered over 2400 km2 area, resulting in a large-scale ground unset-
tlement, deformation, sliding, and sand boiling, coupled with severe damages to buildings,
roads, farmlands, and bridges [20]. The liquefaction during the 1998 Adana–Ceyhan
earthquake in Turkey displaced and fractured the foundations of several homes, ruptured
sewers, water pipelines, and irrigation canals, and damaged small concrete bridges and
pavements [21]. The widespread liquefaction during the 2001 Bhuj, India, earthquake in
the meizoseismal area resulted in sand boils, craters, and lateral spreading [22]. Further,
Ayothiraman et al. [23] in this regard reported that the liquefaction covered an area of more
than 15,000 m2 during the 2001 Bhuj earthquake, causing significant damage. Later, in 2011,
the liquefaction recorded in the Tohoku region and Kanto region covered an area of over
70 km2, including Ibaragi, Chiba, and Tokyo due to the great east Japan earthquake [24–26].
Even the Christchurch earthquake in 2011 resulted in ground distortion, fissures, large
settlements, and lateral ground movements, severely disrupting the city’s lifelines such as
road networks [27]. Most of the damage during the 2018 Sulawesi earthquake, Indonesia,
was due to a liquefaction-induced lateral spreading event [28].

The liquefaction potential index (LPI) has been widely adopted in liquefaction haz-
ard mapping, urban planning, and assessing liquefaction risk to infrastructures [29–31].
Liquefaction can affect and cause damage to infrastructures such as buildings, pipelines,
roads in many different ways. In this regards, liquefaction potential analysis of soil using
available geotechnical information is imperative to mitigate the potential damage caused
by liquefaction. Several studies have been carried out to evaluate the seismic liquefaction
risk for critical infrastructures by using a various simplified method. Mian et al. [32], Tang
et al. [31], Maurer et al. [33] and Meslem et al. [34] evaluated liquefaction-induced loss
at the critical infrastructure scale by using several parameters such as LPI, Liquefaction
Severity Number (LSN), and Probability of Liquefaction (PL). Phule and Choudhury [35]
and D’Apuzzo et al. [36] conducted a liquefaction risk assessment of transportation systems
by using a simplified approach. Similarly, Paolella et al. [37], Mosavat et al. [38], and Coelho
and Costa [39] assessed the liquefaction risk to building structures. As most of the build-
ings in Nepal have been constructing with shallow foundations [12], the same simplified
approach can be used to evaluate the liquefaction risk to roads, airports, and buildings.
Past studies showed that liquefaction is highly vulnerable to shallow foundations [37,40].
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Kathmandu Valley has many perennial rivers flowing through it, and most parts
have a young sandy silt to silty sand layer in the upper bound. The presence of a young
loose saturated sand deposit makes the valley’s soil vulnerable to liquefaction even in
earthquakes during the dry season, such as those of 1934 and 2015. Soil liquefaction
potential in the valley has been determined in the past by different researchers [9,42,43];
however, the effects of liquefaction on critical facilities of the valley have not been studied
yet. The ability to respond and recover from a disaster such as an earthquake is directly
related to the condition of critical facilities during those disasters. Moreover, in earlier
studies, limited borehole data were used, while in this study more than 500 boreholes up to
depths of 20.0 m from 143 locations were considered (Figure 4). Furthermore, most of the
previous studies were confined to determining the safety factor against liquefaction, rather
than the liquefaction potential index (LPI). Notably, the factor of safety against liquefaction
at a given depth does not necessarily provide any clear information on the severity of
liquefaction; however, in this study, we calculated LPI at each borehole site.
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Thus, the objective of this study is to predict the effects of liquefaction on selected
critical facilities of Kathmandu Valley using LPI. Further, the critical facilities chosen for
this study include road networks, health facilities, airports, schools, and colleges. This
study would be beneficial in city planning, as well as for mitigation activities for critical
infrastructures in the valley, making it better prepared to tackle such disasters in the future.
The results from this study can be used only for desk, preliminary and feasibility studies.
Similar studies can be carried out for other critical facilities such as fire and emergency
response systems, police and other security stations, electrical facilities, etc., and also in
other major cities of the country such as Pokhara and Butwal.
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2. Earthquake History and Scenario

Kathmandu Valley is located in the center of the Himalayan concave chain. The
Himalayan arc, which marks an active boundary between the Indian and Eurasian plates,
has caused numerous large earthquakes, both in recent and historical times. Kathmandu
Valley is surrounded by three major tectonic zones, namely the Main Central Thrust (MCT),
Main Boundary Thrust (MBT) and Main Frontal Thrust (MFT) [10,44]. Many active faults
are distributed along these major tectonic boundaries, clearly highlighting the seismic
hazard in this region. The first documented earthquake event in the country dates back
to 7 June 1255. Over recent centuries, earthquakes in 1803, 1833, 1897, 1905, 1934, 1950,
2001, and 2005 have occurred in the Himalayan region and resulted in a large number
of casualties and extensive damages to structures [17,18,45,46]. The most recent major
earthquake in Nepal is the 2015 Gorkha earthquake. Though there have been numerous
earthquakes larger than Mw 7.0 in the past, the 2015 Gorkha earthquake is the most recent
and well-documented earthquake in the region.

Several probabilistic seismic hazard assessments have been conducted for Kathmandu
Valley. Seismic hazard analysis for Kathmandu Valley has been largely confined to similar
sources and resulted from similar earthquake scenarios, i.e., magnitude and PGA [13,47].
Probabilistic seismic hazard assessments conducted by JICA [13] considering seismic source
zone models based on improved earthquake catalogues and modern ground motion models
have been widely used [10,12]. JICA [13] estimated the ground motion of Kathmandu
Valley after analyzing three different scenario earthquakes. Three scenario earthquakes
(Central Nepal South Scenario Earthquake, Far-Mid Wester Nepal Scenario Earthquake, and
Western Nepal Scenario Earthquake) were selected considering the fault, seismo-tectonic
and geological condition around Kathmandu Valley. The 1934 Bihar–Nepal earthquake
was considered as a verification earthquake. One-dimensional ground response analysis
was carried out for the ground amplification. The ground model for response analysis
was prepared from typical column data by conducting several field investigations for soil
type and shear wave velocity (Vs). An attenuation formula was considered to get the peak
ground acceleration at the bedrock. The bedrock was considered to be the layer at which
the minimum Vs is 400 m/s, which exists almost at a depth of 100 m from the ground
surface. JICA [13] reported a PGA of 0.30 g for scenario earthquake of 8.0 Mw with a 10%
probability of exceedance in 50 years (i.e., return period of 475 years) in Kathmandu Valley.

3. Study Area

The critical facilities of Kathmandu Valley, the capital of Nepal, were studied, and the
effects of liquefaction were predicted. The region around the valley has high hills with
steep slopes; shallow bedrocks were also noted in areas around the hills. The geological
map of the valley is shown in Figure 3. The study area was decided on after excluding the
area with bedrock in shallow depth from the specific areas of the valley. Generally, the most
common soils in the valley are clayey silt and grey to dark silty sand. Additionally, poorly
graded, and silty sands can be observed along the river, which is highly susceptible to
liquefaction. Organic clay, fine sand beds, and peat layers may also be found in the surface
layer up to 1 m [48]. Many perennial rivers flow through the valley, which effectively helps
the groundwater table to remain high.

4. Critical Facilities

The objective of this research is to predict the effects of liquefaction on critical facilities
of Kathmandu Valley. The data of critical facilities of Kathmandu Valley were collected
from the department of survey (Nepal), available topographical sheets, google earth images,
and open street map (OSM) data. Though there are several critical facilities in the region,
the ones considered include the road networks, airport, hospitals, schools, and colleges,
the details of which are presented below.
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4.1. Road Network

The roadway is the only means of transport within Kathmandu Valley; under normal
circumstances, the airway is not used for goods transport, which effectively makes road-
ways the only means to import goods required for Kathmandu. Road networks are thereby
critical structures that need to withstand disasters such as earthquakes, particularly seismic
hazards such as liquefaction. The Nepal Road Standard [49] has classified roads into four
categories; these include (i) the national highway, (ii) feeder roads, (iii) district roads, and
(iv) urban roads. For simplicity, we have renamed the urban roads and smaller streets as
‘other roads’. The total length of the entire road network (Figure 5) used in this study is
about 1974.1 km, out of which the length of the national highway is 55.6 km, the feeder road
is 58.1 km, the district road is 189.3 km, and other road is 1671.0 km. The national highways
are the main roads that connect the entire country, while the feeder roads are more localized
in nature, serving the community’s interest, and connecting district headquarters, major
economic centers, and tourism centers. District roads serve the production and market
areas, while urban roads serve to connect the people within the urban municipalities.
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4.2. Airport

Tribhuvan International Airport (TIA) is the only international airport in the country
and the only airport in the capital city. This makes the TIA a pivotal center to receive a
rapid response from the international community and reach regions outside the valley
during disasters such as earthquakes. The total area of TIA (shown in Figure 5) used for
zoning in this study is 2.768 Sq. km.

4.3. Health Facility

Health facilities need to withstand disasters and serve people during emergencies; in
effect, these infrastructures need to be extra strong, and special attention during construc-
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tion should be given. The health facilities include hospitals, critical care facilities, clinics,
and other facilities that provide emergency health responses, especially during a disaster.
A total of 263 health facilities (Figure 6) inside the valley have been categorized according
to their locations in the liquefaction susceptibility zone.
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4.4. School and College

Under normal circumstances, schools and colleges are not considered critical facilities.
However, there is minimal open land in Kathmandu, which is very critical during an
emergency. In that regard, schools and colleges in the valley have been considered critical,
often serving as a temporary shelter during disasters. A total of 1973 schools and 404
colleges (Figure 7) of Kathmandu have been considered for this research. It is seen that the
density of schools and colleges in the central part of Kathmandu Valley is high while this
value is quite low in the countryside of the valley.
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5. SPT-Based Liquefaction Assessment

In Nepal, most of the geotechnical investigations thus far have been limited to standard
penetration tests to a depth of 15 to 20 m because other in situ geotechnical investigations,
such as cone penetration tests (CPTs) and shear wave velocity tests, have been sparsely
used. Although more modern approaches for liquefaction analysis using the CPT, shear
wave velocity, and cyclic loading tests have been developed and provide more accurate
results, the liquefaction potential assessment in the valley has mostly relied on SPT-N
values and borehole data [9,42]. Several methods are available for liquefaction assessment
of soil (e.g., [50–57]) and estimating settlement and lateral displacement of soil (e.g., [56,58])
due to liquefaction. In this study, the method suggested by Idriss and Boulanger [50] was
adopted to perform an analysis of the factor of safety (FS) with respect to liquefaction.
This method has been modified several times, as per the liquefaction case studies from
the past earthquakes, and uses the SPT data and geotechnical properties of the soil profile
to predict the factor of safety against the liquefaction for each layer [50]. Additionally,
we also adopted Iwasaki et al.’s [59] method to calculate the Liquefaction Potential Index
(LPI) of the sites, using FS against liquefaction on each layer. As already mentioned, the
liquefaction analysis was performed considering an earthquake scenario of 8.0 Mw with a
PGA of 0.30 g.

In this method, the FS with respect to liquefaction can be calculated using Equa-
tion (1) [50]. The property of the soils to resist liquefaction is defined as the cyclic resistance
ratio (CRR), and the stress (loading) that results in liquefaction is termed the cyclic stress
ratio (CSR).

FS =
CRR7.5

CSR
MSF (1)

where CRR7.5 is the cyclic resistance ratio calibrated for the earthquake of magnitude 7.5.
The CRR7.5 can be modified using the magnitude scaling factor (MSF) for an earthquake
having different magnitudes; MSF accounts for the effects of the number of cycles during



GeoHazards 2021, 2 161

the earthquake or earthquake duration. The value of MSF for the considered scenario
earthquake was calculated using Equation (2) [50]:

MSF = 6.9e−
Mw

4 − 0.058 (≤ 1.8) (2)

Equation (3) [50] was used for determining the CRR for a cohesionless soil with any
fines content.

CRR7.5 = exp

(
(N1)60cs

14.1
+

(
(N1)60cs

126

)2

−
(
(N1)60cs

23.6

)3

+

(
(N1)60cs

25.4

)4

− 2.8

)
(3)

where (N1)60cs is an equivalent clean-sand SPT blow count. The following equations
(Equations (4) and (5)) are used to calculate (N1)60cs [50]:

(N1)60cs = (N1)60 + ∆(N1)60 (4)

∆(N1)60 = exp

(
1.63 +

9.7
FC + 0.01

−
(

15.7
FC + 0.01

)2
)

(5)

where (N1)60 is the corrected SPT-N value and FC is the fines content in the soils obtained
from sieve analysis of soil collected using a split spoon.

The measured SPT-N value was corrected using Equation (6):

(N1)60 = NCNCECBCRCS (6)

where (N1)60 is the SPT blow count normalized to the atmospheric pressure of 100 kPa
and a hammer efficiency of 60%, N is the measured SPT blow count, and CN, CE, CB, CR
and CS are the correction factors for the overburden stress, hammer energy ratio, borehole
diameter, rod length and samplers with or without liners, respectively.

The CSR is calculated by Equation (7) [50]:

CSR = 0.65
τmax

σ′vc
= 0.65

σvc

σ′vc

amax

g
rd (7)

where τmax is the earthquake-induced maximum shear stress, amax is the peak horizontal
acceleration at the ground surface, g is the gravitational acceleration, σvc and σ’vc are the
total overburden stress and effective overburden stress, respectively, and rd is the stress
reduction coefficient given by Equation (8) [50]:

rd = exp
[
−1.012− 1.126sin

( z
11.73

+ 5.133
)
+ Mw

(
0.106 + 0.118sin

( z
11.28

+ 5.142
))]

(8)

where z is the depth of the soil layer in meters.
A typical soil profile, SPT-N value, and FS is shown in Figure 8. A sample calculation

of FS and LPI is shown in Table 1.

Liquefaction Potential Index (LPI)

The factor of safety against liquefaction at a given depth does not provide clear
information on the severity of the potential ground deformation. For predicting the
severity of liquefaction at a site through considering the soil profile in the top 20 m, the LPI
was calculated using Equations (9)–(13) [59]:

LPI =
∫ z

0
F(z)W(z)dz (9)

where
F(z) = 1 − FS For FS < 1 (10)

F(z) = 0 For FS ≥ 1 (11)
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W(z) = 10 − 0.5z For z < 20 (12)

W(z) = 0 For z ≥ 20 (13)

Based on the LPI value, liquefaction susceptibility of the site can be classified into four
categories as (Table 2): very low, low, high, and very high [59].
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Table 1. Sample calculation of FS and LPI for a typical borehole.

Depth
(m)

Corrected
SPT-N
Value

Soil
Saturation

FC
(%)

σvc
(kPa)

σ’vc
(kPa) rd CSR MSF for

Sand Kσ * CRR for M = 7.5
and σvc’ = 1 atm CRR FS LPI

1.5 11.90 Unsaturated 7 27.00 27.00 1.00 0.19 0.88 1.10 0.13 n.a. 0.00
3 20.90 Unsaturated 7 54.00 54.00 0.99 0.19 0.88 1.09 0.22 n.a. 0.00

4.5 27.14 Unsaturated 7 81.00 81.00 0.98 0.19 0.88 1.04 0.36 n.a. 0.00
6 13.43 Saturated 7 110.25 95.54 0.97 0.22 0.88 1.01 0.14 0.13 0.58 4.36

7.5 18.27 Saturated 9 139.50 110.07 0.95 0.24 0.88 0.99 0.19 0.17 0.71 2.69
9 26.50 Saturated 5 168.75 124.61 0.94 0.25 0.88 0.96 0.33 0.28 1.12 0.00

10.5 27.67 Saturated 5 198.00 139.14 0.93 0.26 0.88 0.94 0.37 0.31 1.19 0.00
12 30.05 Saturated 5 227.25 153.68 0.91 0.26 0.88 0.91 0.49 0.39 1.49 0.00

13.5 24.41 Saturated 5 256.50 168.21 0.89 0.27 0.88 0.92 0.28 0.22 0.84 0.79
15 27.98 Saturated 5 285.75 182.75 0.88 0.27 0.88 0.89 0.38 0.30 1.12 0.00

16.5 27.06 Saturated 5 315.00 197.28 0.86 0.27 0.88 0.88 0.35 0.27 1.00 0.00
18 26.20 Saturated 5 344.25 211.82 0.84 0.27 0.88 0.87 0.32 0.25 0.92 0.12
20 25.16 Saturated 5 383.25 231.20 0.82 0.26 0.88 0.86 0.29 0.22 0.84 0.00

7.96

* overburden correction factor.
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Table 2. Liquefaction potential classification (Adapted from ref. [59]).

LPI Susceptibility

0 Very low
0 < LPI ≤ 5 Low

5 < LPI ≤ 15 High
LPI > 15 Very high

6. Results and Discussion

The occurrence of liquefaction vis a vis its severity was evaluated based on the
classification proposed by Iwasaki et al. [59]. According to Iwasaki et al. [59], no evidence
of liquefaction phenomena is expected where LPI is zero, while low and high liquefaction
potential is expected where LPI values range between 0 and 5, and 5 and 15, respectively.
Notably, a very high potential of liquefaction is expected when the LPI is greater than
15. Figure 9 shows the distribution of liquefaction susceptibility based on the LPI value
at each borehole considered in this study. The LPI histogram shown in Figure 10 reveals
that significant portions of the area in the valley are susceptible to liquefaction. The
liquefaction hazard map based on LPI is shown in Figure 11, which reflects that about
60% of Kathmandu Valley is highly susceptible, while about 24% is not susceptible to an
earthquake scenario of 8.0 Mw with PGA 0.30 g during the monsoon period (rainy season).
Importantly, the increase in the thickness of soft soil deposits and shallow groundwater
tables at the center of the valley was observed to be more susceptible to liquefaction, while
low to very low potential of liquefaction was observed at the edges of the valley.
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In addition, the effects of liquefaction on critical facilities, as discussed in Section 4,
were thoroughly analyzed using the liquefaction susceptibility map (Figure 11). The
critical facilities were overlaid in the map, and the corresponding number or area falling
under each category of liquefaction susceptibility was found. As mentioned earlier, the
liquefaction susceptibility of the site, where the critical infrastructures are located, were
classified into four categories such as very low, low, high, and very high based on the LPI
value. Moreover, the critical facilities that can be affected by liquefaction were quantified
and have been discussed below.
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6.1. Road Network

The spatial distribution of liquefaction along the road network was computed using
GIS. The results obtained are shown in Figure 12 and Table 3. A total of 1974.1 km of the
roads in the valley were analyzed. The total length of the highway within the study area
was found to be 55.6 km, out of which only 0.2% of the highway was found to be in no
liquefaction zone, while 61% was in a very high liquefaction susceptible zone. Out of the
remaining length of highways, 32% was found in a highly susceptible zone, whereas 7% of
the road network was in a low liquefaction zone. The second category of roads studied
were feeder roads. Out of 58.1 km of feeder roads in the valley, 1%, 28%, 37%, and 34%
of the feeder roads were found to be in very low, low, high, and very high liquefaction
susceptibility zones, respectively. Similarly, about 43% of district roads and 41% of other
roads were found to be in a very high liquefaction zones. Importantly, if we are to consider
the total length of roads in the valley, 42% of the roads are estimated to be in very high
liquefaction risk zones, whereas about 5% are in very low liquefaction zones.
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Table 3. Liquefaction susceptibility of the road network in Kathmandu Valley.

LPI
Highways Feeder Roads District Roads Other Roads Total

km % km % km % km % km %

Very low 0.1 0.2 ≈ 0 0.6 1 12.7 7 79.8 5 93.3 5
Low 3.6 7 16.5 28 28.7 15 365.3 22 414.0 21
High 18.0 32 21.2 37 66.7 35 538.3 32 644.3 32

Very high 33.9 61 19.8 34 81.2 43 687.6 41 822.5 42
Total 55.6 100 58.1 100 189.3 100 1671.0 100 1974.1 100

Figure 12 shows that most of the roads in the study area were in high to very high
liquefaction susceptible zones, thereby indicating that a larger road network is liable to be
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affected due to liquefaction during a major earthquake. It is notable that the central part of
the valley has a higher liquefaction potential and the road network in the central region
is also higher. It was also found that major road networks of the valley that have higher
importance and major roles in rapid response during a disaster are also centrally located.
This goes on to suggest that major roads in the valley in high to very high susceptible zones
need to be specially strengthened to minimize liquefaction effects.

6.2. Airport

The liquefaction susceptibility of the Tribhuvan International Airport (TIA) located in
the central part of the valley covering nearly a 3 sq. km area is shown in Figure 12. The
percentage of the area falling under each category of liquefaction was estimated and is
presented in Table 4.

Table 4. Liquefaction susceptibility of Tribhuvan International Airport in Kathmandu Valley.

Liquefaction Susceptibility
Airport

Area (Sq. m) Percentage (%)

Very low 0 0
Low 0.16 6
High 2.16 78

Very high 0.44 16
Total 2.76 100

It can be seen that out of the total area of TIA, no portion of the airport was in a very
low liquefaction zone. Only a small portion (i.e., about 6%) of the airport area on the
northern part was estimated to have a low liquefaction zone. On the other hand, 78% of the
airport’s area is in the high liquefaction zone and 16% is in the very high susceptibility zone.
This indicates that the risk of liquefaction during a major earthquake in and around the
airport area is on the higher side; thus, a detailed soil investigation and countermeasures
of soil liquefaction are needed for the proper functioning of the airport during a major
earthquake.

6.3. Health Facility

Major health facilities in the capital city such as hospitals, clinics, and health posts
were mapped, and the possibility of liquefaction effects on these facilities was evaluated
(Figure 13). Table 5 shows the number of health facilities falling in different categories of
liquefaction susceptibility. Figure 13 indicates that a large number of health facilities are in
the central part of the valley, where most of the buildup area lies. As discussed earlier, the
liquefaction susceptibility in the central region of the valley is higher. The total percentage
of health facilities in a very high liquefaction zone was observed to be 60%, while this was
32% in a high liquefaction zone. This indicates that more than 92% of health facilities have
been in high to a very high zones of liquefaction susceptibility in the valley. Additionally,
the health facilities in very low zones make up a mere 1%, while 7% are in low liquefaction
zones. The higher percentage of health facilities in high to very high liquefaction zone
highlights the importance of detailed soil investigations in these areas, which effectively
should be followed by remedial and countermeasures against liquefaction.

Table 5. Health facilities in the valley falling on a different zone of liquefaction susceptibility.

Liquefaction Susceptibility
Health Facility

Number Percentage (%)

Very low 2 1
Low 18 7
High 84 32

Very high 159 60
Total 263 100
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6.4. School and College

A total of 1973 schools and 404 colleges in the valley have been analyzed (Figure 14).
The schools and colleges falling under a different category of liquefaction are presented in
Table 6.

The plot of schools and colleges in the liquefaction susceptibility map indicates that
schools and colleges in very high liquefaction susceptibility zoned were 54% and 64%,
respectively. This might be attributed to a large number of schools and colleges in the
central part of the valley, which is highly prone to liquefaction. The very low and low
liquefaction zones are located along the edges of the valley where a smaller number of
schools and colleges can be seen. Thus, only 2% of schools and 0.5% of colleges were
effectively in very low liquefaction zones, while a higher percentage of schools and colleges
were in high to very high liquefaction zones.

Table 6. Schools and colleges of Kathmandu Valley falling in a different zone of liquefaction suscepti-
bility.

Liquefaction
Susceptibility

School College

Number Percentage (%) Number Percentage (%)

Very low 43 2 2 0.5 ≈ 0
Low 232 12 15 4
High 629 32 130 32

Very high 1069 54 257 64
Total 1973 100 404 100
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7. Conclusions and Recommendations

A liquefaction potential map of the subsurface geological materials of Kathmandu
Valley was prepared for an earthquake scenario having a magnitude of 8.0 Mw with 0.30 g
PGA. The category of very high and high susceptibility for liquefaction was observed at the
central part of the valley, while low to very low potential of liquefaction was observed at
the edge of the valley. The effects of liquefaction on critical facilities of the valley have been
evaluated using the liquefaction potential map. The critical facilities chosen to evaluate
seismic soil liquefaction effects included the road network, airport, health facilities, schools
and colleges. For an earthquake of 8.0 Mw, PGA 0.30 g and groundwater conditions for
the monsoon period, it was seen that 60% of the hospitals and about 64% of colleges in
the valley are in very high-risk zones of liquefaction. Similarly, 54% of the schools and
42% of the road network in the valley are in a very high liquefaction zone, while 78% of
the airport area is in the high-risk zone of liquefaction occurrence. This goes on to show
that the percentage of critical facilities falling in the very high-risk zone of liquefaction is
certainly on the higher side. Importantly, the central part of the valley, which has a high
chance of liquefaction occurrence, also has a higher percentage of critical facilities, which
highlights the possibility of greater liquefaction effects in that region.

The existing critical infrastructures such as hospitals, schools, colleges, airport, and
road facilities located on weak subsoils that may liquefy under moderate shaking should
be retrofitted to meet the requirement of maintaining their functions after earthquakes.
In addition to, the facilities used in this study, other critical services such as emergency
response services, telecommunication services, financial institutions, and major indus-
trial/commercial facilities located in very high-risk zones of liquefaction should also be
relocated or retrofitted. The development of all these facilities should be carried out consid-
ering appropriate land use guided by the liquefaction risks to mitigate potential loss and
proper functioning after earthquakes. This study can help in urban planning, preliminary
studies, feasibility studies, and land-use policies. This research also assists the government
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authority and the geotechnical engineers beforehand to plan the comprehensive seismic
microzonation based on the provided liquefaction map. The results from this study can be
used only for preliminary studies and desk study. A more detailed site-specific study is
recommended before developing any critical infrastructures in Kathmandu Valley.
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